Gas Assist and Microcellular (MuCell®) Molding Process

Vishu Shah
Consultek
Gas Assist injection molding is a process enhancement to conventional injection molding, involving the injection of high pressure nitrogen gas into the resin melt stream immediately after injection of the resin. The intent is not to cause mixture of nitrogen and resin, but for the nitrogen to displace resin in gas channels and thicker sections of the molded product. The process is a high speed, low pressure injection method, enabled by short shooting the tool, and completing the resin filling phase by nitrogen gas, at a much lower pressures as compared to convention injection molding.
Advantages of Gas assist Molding

- **Cycle time reduction and lower production costs**
 - Lower clamp tonnage
 - Lower Injection pressures
 - Faster cycle due to hollow sections vs. solid section

- **Design Freedom**
 - Large ribs possible and permissible
 - Long flow lengths without multiple drops

- **Quality Improvement**
 - Lower stress within the part
 - Better dimensional stability and part to part size variations
 - Elimination of sink marks and warpage and voids
 - Greater strength and rigidity
 - Reduced knit lines (No multiple drops necessary)

- **Material savings through weight reduction**
 - Hollow parts

- **Simplification of Tooling**
 - Elimination of lifters and undercuts
Disadvantages or Limitations

- **Race Tracking of Polymer Through Gas Channels**
- **Fingering** (The penetration of the gas from gas channel into the thinner sections of the part)
- **Gas Blow-Through**
- **No fully being able to Control where the Gas goes**
- **More Expensive than Standard Injection Molding**
Gas Assist Process Basics

- **Short-shot molding.** A process in which certain features such as ribs or thick walls are cored out with gas in an otherwise solid molded part. This process gets its name from the method of only partially filling the cavity during the polymer injection phase of the cycle and then relying on the gas injection phase to fill out the remainder of the cavity with the material the gas bubble is displacing from the core.

- **Full-shot molding.** A process in which the mold is completely filled during the plastic injection phase. Gas is introduced into the cavity in this case only to provide local packing and to compensate for the effects of polymer volumetric shrinkage as the part cools.

- **Hollow molding.** A process in which all or nearly all of the part is cored out by the gas, in effect making the part itself the gas channel. This is the method most often used to make parts with large cross sections such as rods, tubes, and handles.

Source: MD&DI April 1998 article
Applications: Automotive

Wing Mirror Housing
ABS/PC
Without gas 181 grms
With gas 154 grms
Saving 15%

Interior Handle
Talc Filled PP
Without gas 73 grms
With gas 52 grms
Saving 29 %
Applications: TV, Computers & Office Machines

- **21" TV cabinet**
 - Material: HIPS
 - 5% reduction in cycle time
 - No sink marks or distortion

- **Cabinet Base Molding**
 - Material: HIPS
 - 5% reduction in cycle time
 - No sink marks or distortion

- **Copier Cover**
 - Material: ABS
 - Without gas: 487g
 - With gas: 460g
 - Saving 5.6%

- Sinks & Warpage elimination
Applications: Furniture

Chair Arm Rest
PP

Without gas 1414g
With gas 919g
Saving 35%
Applications: Appliances

Vacuum Cleaner Base
HIPS

Total cost saving $1.50 per piece
Dimensional stability improvement
Surface finish improvement - eliminated sink marks
Inclusion of thicker internal rib sections with no sink marks
Applications: Miscellaneous

Baby Carriage Handle

PP

Without gas 524 grms
With gas 414 grms
Saving 31%

Hollow Bathroom Handrail
Typical Gas Assist Process Cycle

1. Mold closes and reaches clamp tonnage
2. Resin is Injected into cavity as short shot
3. Gas is introduced into the hot melt
4. Gas pressure maintained during cooling cycle
5. Gas pressure is released
6. Mold opens and part ejects
Gas Injection Methods

- **Injection through Nozzle**
 - Pro: Minimum tool Modification
 - Con: Limited control of gas placement and process variables

- **Injection through Gas Pins**
 - Sprue or Runner
 - Cavity
 - Pro: Gas Placement where needed
 - Con: Additional tooling cost

A narrow gas channel is created in a CD tray made from CYCOLAC® resin to improve flatness and dimensional tolerance capacity.
Gas Delivery System

- Nitrogen Bottles
- Nitrogen Generators
- Central Nitrogen Systems
Molding Machine Requirements

No special requirements

No special adaptations or modifications

Works well with smaller size machines also

Stand alone systems available

Integrated systems from IMM manufacturers
Part Design for Gas Assist

- Sizing of gas channels
- Gas channel layout
- Location of gas injection point(s)
Part design: Moldflow® Simulation

Moldflow Plastics Insight™ 3.0
Tooling Considerations

New Tooling

<table>
<thead>
<tr>
<th>Injecting Through nozzle</th>
<th>Sprue gate preferred</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gate size and location is critical</td>
</tr>
<tr>
<td></td>
<td>Cannot use hot runner system</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Injecting in Runner/part</th>
<th>Hot runner ok…</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gas pin location very critical</td>
</tr>
</tbody>
</table>

Converting Existing Tooling

<table>
<thead>
<tr>
<th>Conventional Tooling</th>
<th>Same considerations as new tooling</th>
</tr>
</thead>
</table>

| Hot Runner Tooling |
|----------------------|--------------------------|
| | A) Inject gas through pins |
| | B) Eliminate hot runner |

Venting, Cooling Shrinkage………No special considerations
Gas Counter Pressure & External Gas Molding

- **Gas Counterpressure**
 - ConMet uses a process that includes a pressurized mold cavity that is injected with nitrogen gas to counteract the expansion of the gas within the melt. As the counterpressure is released, the gas bubbles that would conventionally break through the surface are trapped inside, creating a smooth skin.

 During the conventional structural foam molding process, the melt enters the unpressurized mold and immediately begins to foam, generating bubbles of gas that break through the surface and create swirl marks. While offering you all the advantages of low-pressure foam with low-clamp tonnage requirements, gas counterpressure eliminates surface swirl marks while forming a tougher outer skin.

 Using this gas counterpressure process, your product can provide longer-lasting physical properties: flexural modulus, impact resistance, and tensile strength. The smooth surface also means that very little, if any, painting is required, giving you lower finishing costs.

 Source: www.conmet.com
MuCell® Microcellular Technology

- MuCell is the trade name of microcellular polymeric foam produced by Trexel's proprietary MuCell microcellular foam process. The MuCell process uses supercritical fluids (SCFs) of atmospheric gases--not chemical blowing agents to create evenly distributed and uniformly sized microscopic cells throughout a thermoplastic polymer.

Micrograph showing average cell size of 10 microns (.0004 Inches)
Mucell® Vs. Gas Assist

- Surface Appearance Poor
- Microcellular Foam Process (gas is used to produce microcellular structure)
- Gas introduced in the barrel
- Surface same as conventionally molded parts
- Gas assist process (gas is used to assist filling and packing)
- Gas introduced in the nozzle or in Sprue/runner/part
Effects of the MuCell® Molding Process

Molding MuCell versus Solid

- Shot size is reduced
- Final mold fill with cell growth
- Little or no Hold Time or Pressure
 - More uniform shrinkage
 - Reduced molded-in stress
 - Lower clamp tonnage
 - No need to size runner/gates for pack pressure
 - 50% Size reduction is typical
Applications

Weight reduced 10%
Cycle time - 20% - 30%
Machine size reduction up to 50%

HP Printer Chassis
Cycle time - 27%
Weight reduced - 8.5%

Cycloc CRT 3370 ABS - glass filled
In-Mold decoration

Conventional
Mucell
MuCell Injection Molding Machine

• Runs in both solid and MuCell molding
MuCell® Modular Upgrade

A simple, fast and low cost solution to upgrade existing molding machines to the MuCell Process

The MuCell Modular Upgrade converts a standard electric or hydraulic injection molding machine into a fully capable MuCell molding machine. The upgrade consists of two distinct modules: a new injection module that is designed as a drop-in replacement of the existing injection module, and the Series II SCF module.
Equipment Manufacturers

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Manufacturing license fee</th>
<th>"Gas injection" equipment</th>
<th>Additional costs "royalties"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airmold (Battenfeld)6</td>
<td>None</td>
<td>Single Machine, Single Injection Point, Base Price $110,000, Expandable7</td>
<td>None</td>
</tr>
<tr>
<td>Cinpres5</td>
<td>$60,000</td>
<td>Single $35,000, Multiple $58 - 95,000</td>
<td>Based on: Material Usage or Tooling Fee or Flat Fee for Parts</td>
</tr>
<tr>
<td>Epcon</td>
<td>-</td>
<td>Single $55,000 Multiple $77,500</td>
<td>None</td>
</tr>
<tr>
<td>GAIN</td>
<td>Per mold $1.5 - 15,000/yr per facility $25 - 250,000/yr2</td>
<td>Single $25 - 50,000 Multiple $35 - 85,000</td>
<td>None</td>
</tr>
<tr>
<td>HELGA (Hettinga)3</td>
<td>None</td>
<td>HELGA Package $70 - 75,000</td>
<td>None</td>
</tr>
<tr>
<td>Johnson Controls Multinozzle/ Sequential Gas Assist4</td>
<td>None</td>
<td>Integrated into machine controls $30 - 50,000</td>
<td>None</td>
</tr>
<tr>
<td>Nitrojection</td>
<td>$25,000</td>
<td>$45 - 85,000</td>
<td>None</td>
</tr>
</tbody>
</table>
Molders

- APW www.apw.com
- Preproduction plastics www.ppiplastics.com
- Cambro www.cambro.com
Where to find more information…..

Books

- Gas Assist Injection Molding: Principles and Applications
 Edited by Jack Avery, GE Plastics www.hansergardner.com
- Gas Assist Injection Molding
 Paul Dier and Richard Goralski www.cancombookstore.com
- Microcellular Processing
 Kevin Okamoto www.hansergardner.com

Technical literature

- Injection Molding: Gas Assist Technology Guide www.geplastics.com
Education

- **Gas Assist for Injection Molding**

- **Course Title: Gas Assist Part and Mold Design** http://www.lightspeedu.com/syllabus/gasassist.htm
 LightSpeed University online courses

 Technical Seminars
 Assessment of Processing Capabilities
 Theory and Practical Applications of Gas Assist Molding
 Pros and Cons of Gas Assist Molding
 Implementation of Gas Assist Molding
 Designing for Gas Assist Molding

Special thanks to:

- GE Plastics
- Cinpres
- Gain Technologies
- Bauer
- Trexel
GAS Assist Process Movie